Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization
نویسندگان
چکیده
منابع مشابه
Improving Bankruptcy Prediction with Hidden Layer Learning Vector Quantization
A Hidden Layer Learning Vector Quantization (HLVQ), neural networklearning algorithm is used for correcting the outputs of Multilayer Perceptrons (MLP) for predicting corporate bankruptcy. We call this method HLVQ-C, and it is shown that it outperforms both discriminant analysis and traditional neural networks while significantly reducing type I error, which is the type of error that has the hi...
متن کاملGeneralized Learning Vector Quantization
We propose a new learning method, "Generalized Learning Vector Quantization (GLVQ)," in which reference vectors are updated based on the steepest descent method in order to minimize the cost function . The cost function is determined so that the obtained learning rule satisfies the convergence condition. We prove that Kohonen's rule as used in LVQ does not satisfy the convergence condition and ...
متن کاملEntropy coded vector quantization with hidden Markov models
We propose a new vector quantization approach, which consists of Hidden Markov Models(HMMs) and entropy coding scheme. The entropy coding system is determined depending on the speech status modeled by HMMs, so the proposing approach can adaptively allocate suitable numbers of bits to the codewords. This approach realizes about 0.3[dB] coding gain in cepstrum distance(8 states HMMs). In other wo...
متن کاملLearning Vector Quantization with Training Count (LVQTC)
Kohonen's learning vector quantization (LVQ) is modified by attributing training counters to each neuron, which record its training statistics. During training, this allows for dynamic self-allocation of the neurons to classes. In the classification stage training counters provide an estimate of the reliability of classification of the single neurons, which can be exploited to obtain a substant...
متن کاملLearning Vector Quantization With Alternative Distance Criteria
An adaptive algorithm for training of a Nearest Neighbour (NN) classifier is developed in this paper. This learning rule has got some similarity to the well-known LVQ method, but using the nearest centroid neighbourhood concept to estimate optimal locations of the codebook vectors. The aim of this approach is to improve the performance of the standard LVQ algorithms when using a very small code...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Accounting Review
سال: 2006
ISSN: 0963-8180,1468-4497
DOI: 10.1080/09638180600555016